Search published articles


Showing 5 results for Cooling Rate

M. Dehnavi, M. Haddad-Sabzevar, M.h. Avazkonandeh-Gharavol, H. Vafaeenezhad,
Volume 12, Issue 4 (12-2015)
Abstract

 Microsegregation is one of the most important phenomena occurs during solidification. It usually results in formation of some unexpected second phases which generally affect the mechanical properties and specially reduce the workability of casting products. The aim of this research is to study the effect of cooling rate and grain refinement on the microsegregation in Al-4.8 wt.% Cu. For this purpose two series of experiments were designed. In the first set of experiments, the alloy was melted and cooled in three different rates, i.e. 0.04, 0.42, and 1.08 K/s in a DTA furnace. In the second series of experiments, the effect of grain refinement on the microsegregation at a constant cooling rate of 0.19 K/s was investigated. Al-5Ti-1B master alloy was used as grain refiner. Results showed that by increasing the cooling rate the amount of non-equilibrium eutectic phase increases from 5.1 to 7.4 wt.%, and the minimum concentration of solute element in primary phase decreases from 1.51 to 1.05 wt.% Cu. By grain refinement of the alloy, the amount of non-equilibrium eutectic phase decreases from 5.5 to 4.7 wt.%, and the minimum concentration of solute element in the primary phase increases from 0.98 to 1.07 wt.% Cu. So it is concluded that increasing cooling rate in the range of 0.04 to 1.08 K/s, increases and grain refinement reduces the microsegregation 


E. Abbasi, K. Dehghani, T. Niendorf, S. V. Sajadifar,
Volume 17, Issue 4 (12-2020)
Abstract

The effect of cooling rate after annealing at 900 °C on the microstructure and hardness of high entropy alloys was investigated using two typical samples with the chemical composition of Co16Cr14.5Fe29Mn11.5Ni29 and Co11.5Cr7Fe27Mn27Ni27(Nb0.08C0.5) (at%). The microstructural characterisation and hardness measurements were carried out by optical microscopy, scanning electron microscopy, wavelength-dispersive X-ray spectroscopy, electron back scattered diffraction, X-ray diffraction technique and Vickers hardness testing. A face centred cubic crystal structure matrix was observed in both alloys before and after annealing and regardless of cooling conditions. SEM analyses revealed an extensive precipitation in Co11.5Cr7Fe27Mn27Ni27(Nb0.08C0.5) alloy after annealing. It was also found that air/furnace cooling can enhance grain growth-coarsening just in Co16Cr14.5Fe29Mn11.5Ni29. However, the hardness results generally showed insignificant hardness variations in both alloys after water-quenching, air-cooling and furnace-cooling. The results suggested that the hardness is mainly controlled by solid solution strengthening.

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb