IN PRESS                   Back to the articles list | Back to browse issues page


XML Print


Abstract:   (269 Views)
This work presents a comprehensive investigation of the high cycle fatigue behavior of Haynes 25 cobalt-based superalloy and its welds produced by pulsed continuous-wave (CW) laser welding. The alloy, manufactured through vacuum induction melting and electroslag remelting followed by rolling and annealing, exhibited a yield strength of 650 MPa, an ultimate tensile strength of 1050 MPa, and an outstanding elongation of 57% at room temperature. The fatigue limit was determined by test method as 200 MPa for lifetimes exceeding 10⁸ cycles, highlighting its excellent resistance to cyclic loading. For the weld zone, fabricated under optimized pulsed CW laser parameters, the yield and ultimate tensile strengths were 660 MPa and 965 MPa, respectively, with a fatigue limit of 175 MPa. Advanced microstructural analyses using OM, SEM, EBSD, and XRD revealed an austenitic FCC matrix with carbide precipitates, predominantly (W, Cr)₇C₃ and M₆C, decorating both the matrix and grain boundaries. Fatigue crack initiation in the base metal was associated with carbide clusters near the surface, while in the weld zone it was strongly linked to near-surface gas porosity defects. These findings not only establish fundamental fatigue benchmarks for Haynes 25 but also provide the first direct insights into the microstructural origins of fatigue damage in its laser-welded joints, thereby addressing a critical knowledge gap for its deployment in high-temperature and cyclic-loading environments.
Full-Text [PDF 2621 kb]   (75 Downloads)    

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb