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Abstract

This paper presents a numerical technique for the calculation of stress intensity factor as a function of time 

for coupled thermoelastic problems. In this task, effect of inertia term considering coupled theory of 

thermoelasticity is investigated and its importance is shown.

A boundary element method using Laplace transform in time-domain is developed for the analysis of 

fracture mechanic considering dynamic coupled thermoelasticity problems in two-dimensional finite domain. 

The Laplace transform method is applied to the time-domain and the resulting equations in the transformed 
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field are discretized using boundary element method. Actual physical quantities in time-domain is obtained, 

using the numerical inversion of the Laplace transform method.

The singular behavior of the temperature and stress fields in the vicinity of the crack tip is modeled by 

quarter-point elements. Thermal dynamic stress intensity factor for mode I is evaluated using J-integral 

method. By using J-integral method effects of inertia term and other terms such as strain energy on stress 

intensity factor may be investigated separately and their importance may be shown. The accuracy of the 

method is investigated through comparison of the results with the available data in literature.

Keywords: Dynamic fracture mechanics; Coupled thermoelasticity; Boundary element; Laplace transform

Nomenclature

E modulus of elasticity 

velocity of the longitudinal stress wave 

C=T0γ
2/ρce(λ+2µ) coupling parameter 

ce specific heat at constant strain 

nj a components of outward normal vector to the boundary

k thermal conductivity 

KI mode I stress intensity factor 

heat flux vector on the boundary 

s Laplace transform parameter 

T temperature 

T0 reference temperature 

temperature on the boundary 

t time 

ui components of displacement vector 

fundamental solution tensor 

(·) time differentiation 

(,i) partial differentiation with respect to xi (i=1,2) 

α=k/(ρceCs) unit length 

γ stress temperature modulus 

λ, µ Lame's constants 

u Poisson ratio 

ρ mass density 
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Encyclopedia of
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εij the components of strain tensor 

σij the components of stress tensor 

traction vector on the boundary 

Article Outline
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1. Introduction

In recent years, there has been a great interest in the distribution of thermal stress near to the vicinity of a 

crack in the interior of an elastic solid, mainly because of its importance in theories of brittle and ductile 

fracture and many potential applications in industrial facilities. In sensitive equipment such as pressure 

vessels, the fracture of a component, due to sudden cooling, say, can lead to complete failure. The 

possibility of a crack-induced failure following thermal shock may be assessed by calculating the thermal 

stress intensity factors for the cracked component.

Just now there is no report on the evaluation of the dynamic stress intensity factor for thermal shock 

problems with the coupled thermoelastic assumption with the inertia term. The previous works are limited to 

evaluate the stress intensity factor and/or the thermal shock stress intensity factor for transient or coupled 

thermoelasticity problems where the inertia term is ignored.

In the classical study of thermoelastic crack problems, the theoretical solutions are available only for very 

few problems in which cracks are contained in infinite media under special thermal loading conditions, such 

as in the work of Kassir and Bergman [1]. For cracked bodies of finite dimensions, exact solutions are 

impossible to obtain. Wilson and Yu [2] employed the finite element method to deal with these problems. 

The method is combined with the modified J-integral theory proposed by them. The other prevailing 

methods employed by Nied [3] and Chen and Weng [4] is based on the concept of principle superposition. 

That is, in the absence of a crack, the thermal loading is replaced by a traction force, which is equivalent to 

the internal force at the prospective crack face.

Uncoupled transient thermoelasticity has been the subject of many investigations with a boundary element 

method of analysis. For instance, Tanaka et al. [5] implemented a volume based thermal body approach. 

However, volume discretization removes some of the advantages of the standard BEM. Sladek and Sladek 

[6] presented a series of papers on coupled thermoelasticity that included a time-domain method. The initial 

time-domain boundary integral equation, were presented in a boundary only formulation, but the primary 

variables include time derivatives. Sladek and Sladek [7] later presented a boundary integral formulation in 

terms of regular primary variables; they used inverse Laplace transforms on their previous equations. 

Raveendra et al. [8] also used a sub region technique to solve crack problems using a boundary only 
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(1)

(2)

(3)

(4)

(5)

(6)

formulation. Hosseini-Tehrani et al. [9] presented a boundary element formulation for dynamic crack 

analysis considering coupled theory of thermoelasticity. In this article using crack opening displacement 

method, conditions where the inertia term plays an important role is discussed as well as the effects of 

coupling parameter on crack intensity factor variations.

This paper presents a boundary element formulation for the crack analysis considering coupled theory of 

thermoelasticity. In this work an isotropic and homogeneous material, in two-dimensional plain strain 

geometry with an initial edge crack on its boundary is considered. The body is exposed to a thermal shock 

on its boundary and the resulting thermal stress waves are investigated through the coupled thermoelastic 

equations. Due to the short time interval of the imposed thermal shock, the Laplace transforms method is 

employed to model the time variable in the boundary element formulation. The discretized forms of the 

equations are obtained by the approximation of boundary variations by quadratic elements, and the quarter 

point singular element is used at the crack tip. The present approach is used to evaluate the thermal 

dynamic stress intensity factor (TDSIF) at the first opening crack mode. An infinite strip with a crack on its 

surface under sudden cooling is considered. TDSIF is obtained using J-integral method. For thermal shock 

loading, the time dependent TDSIF is obtained using the Durbin [10] method. The results are compared 

with the available transient results. Effects of different terms such as strain energy and, inertia term on 

crack intensity factor are discussed using coupled and uncoupled theories of thermoelasticity.

2. Governing equations

A homogeneous isotropic thermoelastic solid is considered. In the absence of body forces and heat 

generation, the governing equations for coupled theory of thermoelasticity in time-domain are:

The dimensionless variables are defined as:

Eqs. (1) and (2) takes the form (dropping the hat for convenience):

Transferring Eqs. (4) and (5) to the Laplace domain yields:
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(7)

(8)

(9)

(10)

(11)

(12)

(13)

Eqs. (6) and (7) can be rewritten in matrix form as

where . The boundary conditions are assumed to be as follow:

In order to derive the boundary integral problem, the following weak formulation of the differential equation 

set (8) for the fundamental solution tensor  is considered:

After integrating by parts over the domain and taking a limiting procedure approaching the internal source 

point to the boundary point, the following boundary integral equation is obtained

where Ckj denote the shape coefficient tensor. The kernel  in (11) is defined by:

Here the fundamental solution tensor  must satisfy the differential equation

where lij is the adjoint operator of Lij(µij=(lij)
−1det(lij)) in Eq. (8).

3. Fundamental solution

In order to construct the fundamental solution, we put the fundamental solution tensor  of Eq. (13) in the 

following potential representation using the transposed co-factor operator lij of µij and scalar function Φ*:
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(14)

(15)

(16)

(17)

(18)

(19)

(20)

After substituting Eqs. (14) into (13), the following differential equation is obtained

ΛΦ*(x,y,s)=−δ(x−y)

where the operator Λ is

and ∆ denotes the Laplacian.  are the solution of:

The solution for Φ* from Eq. (15) with help of Eq. (16) is thus:

The fundamental solution tensor  for two-dimensional domain is found as follows

where
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(21)

(22)

(23)

and

Here, K0, K1 and K2 are modified Bessel function of second kind zero, first, and second orders, respectively.

In order to solve numerically the boundary element integral Eq. (11), the standard boundary element 

procedure may be applied. When transformed numerical solutions are specified, transient solutions may be 

obtained using an appropriate numerical inversion technique. In this paper, a method presented by Durbin 

[10], which combines the Fourier cosine and sine transform to reduce numerical error, is adopted for the 

numerical inversion. This formulation yields time-domain functional values F(tn) as

where ∆t is the time step,  is the function in the Laplace domain and
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(24)

(25)

(26)

with the real constant β=6/tn based upon experience and the recommendation of Durbin [10]. Different 

values of 5≤βtn≤10, according to Durbin's recommendation, were considered in the analysis and verification 

of the method. The best results were achieved by choosing βtn=6. This value was used for all examples 

given in this paper. Note that form Eqs. (22) and (23), the determination of F(tn) for n=0,1,…,N−1 depends 

upon the values of  for m=0,1,…,M−1, where M=N(L+1). Consequently, the boundary integral 

equations

must be solved independently at each of the M discrete values sm of the transform parameters. In the 

current implementation, N=80 and, L=0 is considered to minimize the computational effort.

4. Numerical formulation

The boundary of the solution domain Γ is divided into N element, such that Eq. (11) becomes

where . On each element the boundary parameter x (with components xj), the unknown 

displacement and temperature field , the traction field  and the heat flux field  are 

approximated using the interpolation functions in the form

where Mθ and Nθ are called the shape functions and are polynomials of degree m−1. The property of 

these shape functions is such that they are equal to 1 at nod θ and 0 at all other nodes, Here, xθ,  and 

 are the values of the function at node θ.

The different choices of Mθ and Nθ lead to different boundary element formulation. If Mθ=Nθ, the 

formulation is referred to as isoparametric and, if Mθ is a higher-order polynomial than Nθ, then the 

formulation is referred to as superparametric. Conversely, if Mθ is a lower-order polynomial than Nθ, then 

the formulation is referred to as subparametric.

For the present two-dimensional formulation, the isoparametric element is considered. The shape functions 

Mθ are defined in terms of the non-dimensional coordinates ξ(−1≤ξ≤1) and can be derived from the 

Lagrange polynomials defined, for degree m−1, as:
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(27)

(28)

(29)

(30)

(31)

(32)

(33)

It is seen that Mθ(ξ) is given by the product of m linear factors. The Lagrangian shape function Mθ(ξ) can 

be shown to have the following properties. At node

where ξ1=−1 is the first and ξm=1 is the last point in each element. Also:

For constant and quadratic elements, the shape functions Mθ(ξ) are listed as follows.

For the constant element, m=1 and M(ξ)=1. For a quadratic element considering:

A discretized boundary element formulation can be obtained by substituting Eqs. (26) and (27) with 

Mθ=Nθ, into the integral Eq. (25) to obtain:

The coefficients  and  are defined in term of the integrals over Γn where dΓn(ξ) becomes Jn(ξ)dξ. 

Therefore:

In general, the Jacobian J(ξ) of a transformation is given as:

Therefore:

Page 9 of 17ScienceDirect - Engineering Analysis with Boundary Elements : Boundary element analy...

10/22/2011http://www.sciencedirect.com/science/article/pii/S095579970500010X



(34)

(35)

(36)

(37)

(38)

5. Evaluation of TDSIF

The magnitude of stress intensity factor is a measure of the severity of the crack in both dynamic and static 

problems. The stress intensity factor may be determined from the crack-opening displacements formula 

(Fig. 1), considering two-points displacements on each edge of the crack, the stress intensity factors are 

given by Blandford et al. [11] as follows

where κ=3−4v for plane strain and (3−v)/(1+v) for plane stress condition and the length of the singular 

element at the crack tip is represented by l. The points B, C, D and E are shown in Fig. 1, where AC=l and 

AB=l/4.

 

Full-size image (2K)

Fig. 1. 

Element geometries for stress intensity factor computations.

For symmetric crack vB=−vD and vC=−vE, and the expression for KI is simplified to:

A different formula based on one-point displacement on each edge of the crack is obtained if vB at r=l/4 is 

considered. This formula is [12]:

The dynamic stress intensity factors can also be determined from a path independent J-integral [12], [13], 

[14] and [15]. For a mixed mode case, the fields of derivatives of displacements, strains, stresses, tractions 

and accelerations are decomposed into the symmetric mode I and the antisymmetric mode II and the J-

integral is calculated for the first mode of deformation as
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(39)

(40)

(41)

where S is an arbitrary curve surrounding the crack tip; SC are the crack surfaces; A the area enclosed by S 

and SC; W the strain energy density; n1 the component of the unit outward normal to the boundary of A; and 

I is the mode of deformation. The elastic strain energy W is given by:

The variables in Eq. (38) are expressed in the local crack reference system, shown in Fig. 2. The TDSIFs 

are calculated from the JI-integral, as follows:

 

Full-size image (13K)

Fig. 2. 

Integration path for the J-integral and its discretization. Crack tip is located at (1, 0). All dimensions are 

normalized dividing by crack length.

The path independent integrals are calculated for a regular polygonal path with the center at the crack tip. 

The first and last points of the path are the nodes on the crack faces. The discretization of the domain 

enclosed by the path is shown in Fig. 2. All the variables required for the J-integral are obtained by using 

the appropriate boundary element equations. The accelerations are calculated by using the displacement at 

different time steps and the central difference method

where ∆t is the time step and superscripts denote time nodes. The accuracy of the above approximation 

depends on the variation of accelerations. A better approximation may be obtained by calculating the 

acceleration directly from the boundary element equation, as has been shown in Fedelinski et al. [16].

The boundary term in Eq. (38) is computed using the trapezoidal rule and the domain term by using 

Gaussian integration. The centers of trapeziums and triangles which are used for Gaussian integration are 

shown in Fig. 2.

6. Results and discussion

If the period of thermal shock duration is small enough compared to the first period of natural vibration, then 

the dynamic thermoelasticity may be important. Consider an infinite strip shown in Fig. 3, initially subjected 

to a uniform temperature T0 with an edge crack perpendicular to its top surface The strip is rapidly cooled 

by conduction at its upper surface x2=0, whereas the bottom surface x2=W is insulated. This is a mode I 

crack opening problem. The crack edges assumed to be thermally insulated. Due to the symmetry about 

the x2-axis, only half of the strip is discretized.
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Full-size image (5K)

Fig. 3. 

(a) Cracked strip initially at T0 under sudden cooling Te and (b) boundary condition.

To solve the problem by boundary element method a proper length to width ratio must be defined. Different 

ratios of length to width have different effects on maximum stress intensity factor. Katsareas and Anifantis 

[17] showed that the ratios of L/W≥1 have minor effect on the maximum stress intensity factor around the 

crack tip. Therefore, to select a minimum and reliable solution domain and consequently minimum number 

of boundary elements, L/W=1 is selected. The boundary is divided into 24 quadratic elements. Using larger 

number of elements did not alter the results by a significant amount. Quarter-point singular elements are 

used adjacent to the crack tip (in front and behind of the crack tip). The boundary element model is 

presented in Fig. 3(b), for a crack depth of a*=0.05 and L/W=1, where a*=a/W.  is defined as the 

dimensionless TDSIF, which for plain strain condition is  and t*=kt

(/ρceW2) is the dimensionless time known as the Fourier number.

In all preceding computations, TDSIF's are obtained using COD one-point displacement formula and, J-

integral method. Many investigators such as Boley and Winer [18], Jadeja and Loo [19] indicated that the 

effect of the inertia term becomes more significant only when parameter B1, the ratio of the characteristic 

thermal time (L2ρcε/k) to the characteristic mechanical time (proportional to natural period of vibration of 

the structure), becomes small. This is the condition corresponding to the very thin structures. For the 

purpose of comparison, B1 is considered in the order of 107, therefore, the effect of inertia term is negligible.

Fig. 4 shows the variation of stress intensity  versus t*. The calculations are carried out for a quarter-

point crack-tip element using the uncoupled theory of thermoelasticity. In Fig. 4, the variation of  versus 

time derived by the analytical method obtained by Lee and Sim [20], the boundary element method [17], 

and the method described in the present work are compared. The analytical solution of Lee and Sim [20] 

and the boundary element method solution used by Katsareas and Anifantis [17] are obtained ignoring the 

inertia term. The analysis of the present work with the assumed B1 has good agreement with the analytical 

and boundary element method results.

 

Full-size image (6K)

Fig. 4. 
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Comparison of the dimensionless thermal dynamic stress intensity factor  versus dimensionless 

time t*, with analytical and numerical transient results.

To study the effect of thermo-mechanical coupling, the variation of  versus the dimensionless time for 

different coupling parameters are shown in Fig. 5. As the coupling parameter is increased, the peak value 

of  increases. The increase of the coupling parameter, however, causes the peak value of  occurs at 

larger time. This is the same result obtained by Chen and Weng [4]. They used coupled thermoelastic 

equations without consideration of the inertia term.

 

Full-size image (6K)

Fig. 5. 

Comparison of the dimensionless thermal dynamic stress intensity factor  versus dimensionless 

time considering coupled theory of thermoelasticity with uncoupled analytical result for different 

coupling parameters.

Fig. 4 and Fig. 5 are the plot of  versus time, but the time scale is selected large enough to compare the 

results with the known data (t*=1 is of the order of 10 s). To see the effects of the inertia term, however, the 

time scale must be selected small. To observe the effects of the inertia term, t*=1 must be in the order of 

10−11 s (for more details see Hosseini-Tehrani et al. [21]), which is equivalent to 400 times .

Fig. 6 shows crack intensity factor variation versus dimensionless time t*. In this figure, t*=1 means 

9.3×10−12 s and W is equal to 40*α.

 

Full-size image (7K)

Fig. 6. 

Comparison of  variation versus t* using J-integral and COD methods for uncoupled and coupled 

theories.

This figure compares , obtained by COD and J-integral methods considering uncoupled and coupled 

theory of thermoelasticity. As it is seen there is no significant difference between these two methods.

In Fig. 6,  is increased instantaneously after application of sudden cooling. At time t*=0.002, the 

thermoelastic wave stress reaches the tip of the crack. This cold shock produces tensile stress in the x2-
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direction and due to the effect of Poisson's ratio; compressive stress produced in the x1-direction. This 

phenomenon results in crack opening and thus  increases by time, as shown in Fig. 6.

When the thermoelastic wave front passes through the crack tip, a compressive stress produced in the x2-

direction and a tensile stress in the x1-direction in the domain, tensile stress causes extension in the x1-

direction, and while the crack edges are free they can move towards each other. This phenomenon has a 

decreasing effect on . This decrease is shown in Fig. 6 following t*=0.002 to about t*=0.0035. From 

t*=0.0035, the  value is increased with a slower rate compared to the initial increase. As time is 

advanced, the thermoelastic waves are reflected from the boundaries and cause fluctuations in the  

value versus time. The -curve for the coupled case of C=0.6 is shown in Fig. 6. This curve is below the 

-curve for the uncoupled case. This result is justified with Fig. 5 for the small values of time.

The J-integral, which represents the dynamic energy release rate for propagating cracks, contains inertia 

and strain energy terms. J-integral method allows calculating these two terms separately. In this way, the 

importance of each term may be investigated. Fig. 7 and Fig. 8 show the effects of inertia and strain energy 

on computed J-integral. Through comparison of strain energy and, J-integral, it seems that fluctuations on J

-integral are mainly caused by inertia term. These fluctuations are related to wave reflection from the 

cracks' tip and boundaries.

 

Full-size image (7K)

Fig. 7. 

Variation of the J-integral, effect of inertia and strain energy terms versus t* for uncoupled theory.

 

Full-size image (6K)

Fig. 8. 

Variation of the J-integral, effect of inertia and strain energy terms versus t* for coupled theory.

The most important conclusion from these results is this fact: the magnitude of crack intensity factor is 

mostly dependent on strain energy term. In Fig. 6, Fig. 7 and Fig. 8, the maximum value of  is nearly 

two times of the maximum value of  in Fig. 4. This higher value is achieved because the strain energy 

and stresses are computed using dynamic thermoelasticity formula, containing inertia term, and considering 

conditions where this term is important.

7. Conclusions
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A boundary element method and Laplace transform in time-domain are developed for the analysis of 

fractured planar bodies subjected to thermal shock type loads.

The transient coupled thermoelasticity is solved without domain discretization. The singular behavior of the 

temperature and stress fields, in the vicinity of the crack tip, is modeled by quarter-point elements. The 

thermal dynamic stress intensity factor for mode I is evaluated from computed nodal values, using the COD 

and J-integral formulas. The accuracy of the method is investigated through comparison of present results 

with available analytical and numerical works.

The important results of this study are:

1. Treatment of the time-domain in this paper is through the Laplace transform method. This is an important 

concept to realistically evaluate the field variables under the coupled theory of thermoelasticity. 

2. The appropriate time scale in which the effect of the inertia term is observed is considered and the 

importance of the inertia term is shown. When the inertia term is considered, higher values for  are 

achieved. The maximum value of  is about double compared to the case where the inertia term is 

ignored, or is not important. 

3. The domain integral containing inertia term in Eq. (38) adds only more fluctuation on  variations 

versus time, but it has minor effect on changing the value of it. 

4. Compared to the case where the inertia term is not important, strain energy has a major effect on 

doubling the maximum value of . 
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