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a b s t r a c t

A new method of modeling and identification of weak nonlinear behavior of tilting pad journal bearings
(TPJBs) is proposed. A novel nonlinear model of a TPJB based on a Taylor series expansion of oil film
forces, consistent with the transient form of Reynolds differential equation (the original model), is
developed. The least mean square technique in time domain is employed to identify Taylor series
coefficients of the nonlinear model. The terms with dominant effects on the nonlinear oil film forces are
chosen using the subset selection method. Good agreement is achieved between the predicated
response obtained from the original model and the one evaluated through using the identified
nonlinear model.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, hydrodynamic tilting pad journal bearings (TPJB)
are widely used in industrial rotating machines for their excellent
stability, high radial load capacity and high speed operating
conditions. Dynamical behavior of a journal bearing may be fully
characterized by its operating conditions. These include journal
angular velocity, applied radial load, inlet oil temperature/pres-
sure, bearing’s material and, its geometry. The Reynolds differen-
tial equation along with the heat equations which are
incorporating the aforementioned characteristics, have been basi-
cally used to model the pressure and temperature distributions
inside the journal bearing. A common approach for modeling the
nonlinear oil film forces in plain journal bearings is based on
Taylor series expansion of oil film forces by perturbed displace-
ments and velocities from journal equilibrium position. In a
specified rotor-bearing system, all the operational conditions and
the geometric and material properties, except the journal angular
velocity, are usually kept constant. Thus, in such a case, the
dynamic coefficients evaluated by Taylor series expansion of oil
film forces may become dependent only on the angular velocity.
The speed dependent dynamic coefficients are often used as a
standard representation of a foundation dynamic model in a given
rotating machine.

The Taylor series expansion of oil film forces with the assumption
of linear behavior of journal bearing dynamics will yield eight stiffness

and damping coefficients. The dynamic modeling of journal bearings,
specifically the TPJBs, by linear dynamic coefficients is a common
approach to linear dynamic analysis of rotor-bearings systems, and
researchers have proposed several procedures for evaluating such
coefficients over past decades [1–8]. However, linear coefficients may
not be used in an accurate prediction of unbalance response while
rotating parts experiences large amplitude vibration due to high
dynamic loads. Under these conditions, the nonlinear model of oil
film forces in journal bearings must be employed in order to
accurately predict the dynamic response of the rotating machines.
Although there are several existing studies in the literature concerning
the calculation of linear dynamic coefficients in different types of
journal bearings such as TPJBs, the evaluation of nonlinear dynamic
coefficients have been confined to plain journal bearings. Choy et al.
[9] expanded the nonlinear oil film forces using the odd power series
of journal displacement from its equilibrium position. They showed
that at displacements far away from the equilibrium position, the
higher order terms of nonlinear stiffness coefficients dominate accu-
racy of nonlinear oil-film force predictions. Czolczynski [10] described
an identification procedure for the linear and nonlinear stiffness and
damping coefficients of gas bearings. The procedure estimates
dynamic coefficients of bearing response assuming it follows a simple
harmonic motion. However, this assumption is not valid in general, as
the journal response under high dynamic loads may contain higher
harmonies which are not predicted by the adopted assumption. Chu
et al. [11] described a quasi-static nonlinear dynamic model in order to
include higher order terms in a bearing reaction expansion to capture
nonlinearity within the oil film forces. They described and used an
error evaluation scheme to set confidence bounds on the higher order
results. It was shown that the oil film force nonlinearities may be
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significant and the linear model to be valid only within small
amplitudes. The variations of stiffness and damping coefficients of
bearing oil films along the locus of rotor center were obtained by
means of numerical analysis of a rotor-journal bearing system exposed
large dynamic loads [12]. Most of the dynamic coefficients vary by an
order of magnitude. This wide variation shows the noticeable influ-
ence of nonlinearities on the system dynamic response. A procedure
using multiple regression analysis was developed to identify the
nonlinear dynamic coefficients [13]. The dynamic coefficients were
evaluated along the locus of journal center based on the third order
Taylor series expansion of the oil film forces with respect to perturbed
amplitudes about equilibrium position. Variations of nonlinear
dynamic coefficients with reference to the linear ones were presented
to establish a criterion for using the linear coefficients in different
operating conditions. In a similar study [14], the variation of nonlinear
stiffness and damping coefficients along the journal orbit with respect
to equilibrium positionwas investigated. It was shown that the degree
of nonlinearity introduced into the nonlinear dynamic coefficients in
the nonlinear analysis might be larger at low eccentricity ratios than at
high eccentricity ratios. Zhao et al. [15] proposed three types of
nonlinear force models based on retaining certain terms of Taylor
series expansion of oil film forces in plain journal bearings. The
dynamic coefficients associated with the models were identified
through applying a least-mean squares method in time domain. They
concluded that reliable linear coefficients can be obtained through the
models. However, the nonlinear coefficients in the proposed models
may be evaluated reliably only if the excitation amplitude is large
enough. Meruane and Pascual [16] developed a framework to identify
nonlinear dynamic coefficients of a plain journal bearing from the
journal forced response under high dynamic loading. The nonlinear oil

film force model was represented through a third order Taylor series
expansion which neglected the coupling terms between displace-
ments and velocities. Weimin et al. [17] presented a computational
method which is independent on the journal orbit to predict bearing
dynamic coefficients using partial derivative method. In their study,
the variation of dynamic coefficients with eccentricity ratios and
length-to-diameter ratios of a plain journal bearing model have been
studied. They concluded that rise in these parameters leads to increase
in dynamic coefficients, and the nonlinear effects in oil-film forces are
significant at heavy static loads. Yang et al. [18] extended the partial
derivative method to identify the linear and second-order nonlinear
dynamic coefficients of finite-length bearings. Then, the identified
model was used to show the nonlinear dynamic behavior in a simple
rotor-bearing system. Those obtained nonlinear motions have been
studied by the phase portrait, journal trajectory and Poincare maps.
They concluded that the proposed nonlinear modeling of oil film
forces can be employed in the nonlinear dynamic analysis of other
types of oil-film bearings. The aforementioned research [9–18] have
indicated the ability of the nonlinear models based on higher order
Taylor series expansion of oil film forces to identify the nonlinear
effects within the associated journal bearings.

There exists a lack of study in employing the nonlinear
dynamic coefficients for modeling oil film forces within more
complicated journal bearings such as TPJB, which has nþ2 DOFs
where n is the number of pads and the other two DOFs are
translational motions of the journal. A prevalent approach to
model the nonlinearities in the TPJBs is solving the Reynolds
equation for nonlinear forces and moments in the TPJBs using
numerical integrations. Several researchers adopted this approach
in order to evaluate the transient unbalance response of rotating

Nomenclature

cij; i,j¼X,Y linear damping coefficients
CP oil specific heat capacity
Db bearing diameter
DJ journal diameter
e unbalance mass eccentricity
fp fractional angular position of pivot
FX, FY oil film forces in the x and y directions
FNLX ; FNLY nonlinear parts of the oil film forces in the x and y

directions
hk oil film thickness in the kth pad
Hp1 heat convection coefficient between the inner pad

surface and the oil film
Hp2 heat convection coefficient between the outer pad

surface and the oil film
Hp3 heat convection coefficient between the leading/trail-

ing edges of the pad and the oil film
HJ heat convection coefficient between the journal sur-

face and the oil film
IP pad moment of inertia in relation to pivot center
kij; i,j¼X,Y linear stiffness coefficients
Kxi, Kyj ith and jth nonlinear dynamic coefficients in x and y

directions
kxi, kyj dimensionless ith and jth nonlinear dynamic coeffi-

cients in x and y directions, respectively
kp1 heat conduction of the inner surface of the pad
kp2 heat conduction of the outer surface and the leading/

trailing edges of the pad
L axial bearing length
m preload
mJ journal mass

Mk moment applied to the kth pad
OB center of the bearing
OJ center of the journal
Pk pressure distribution in the kth pad
Psup oil supply pressure
Qsup oil supply flow rate
tp pad thickness
Tsup oil supply temperature
Tk temperature distribution in the oil film between the

kth pad and the journal
Tk
Sp temperature distribution on the inner surface of the

kth pad
TJ journal surface temperature
Tk
p temperature distribution in the kth pad

Rb bearing radius
RJ journal radius
Rp pad radius
Rop¼Rpþtp outer pad radius
Wb radial static load on bearing
X,Y journal displacements in x and y directions
z bearing axial coordinate
δk tilt angle in the kth pad
Δp angular dimension of pad
θ bearing circumferential coordinate
θp pivoting angles of pads
θk
p pivoting angle of the kth pad
θk
l leading angle of the kth pad
θk
t trailing angle of the kth pad
μ dynamic oil viscosity
Ω angular velocity of the journal
ρ oil density
β thermo-viscosity index
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systems supported on various TPJBs [19–30]. In a different study
on transient behavior in TPJBs [31], an analytical model based on
the short bearing theory has been proposed to calculate the
nonlinear forces of a TPJB including the turbulence effect, and a
comparison has been made between analytical models with and
without this effect. In the study, the spatial integration of the
Reynolds equation to obtain pressure distribution has been
replaced by the closed form expression of the oil film forces,
however the DOFs corresponding to pads still remains in the time
integration process of the governing equations of motions. The
approach based on numerical integration of the original governing
equations of a TPJB may lead to higher computational accuracy
compared to the approach which employs nonlinear dynamic
coefficients; nevertheless, it takes longer time to have a reliable
analysis by such a method.

In the present paper, a new methodology for modeling and
identification of nonlinear dynamic coefficients in TPJBs is devel-
oped. The nonlinear model is characterized by expansion of oil film
forces through Taylor series with nonlinear terms expressed using
products of perturbed displacements and velocities. A novel
arrangement of nonlinear dynamic coefficients, according to a basic
understanding of the transient Reynolds equation, will be pre-
sented. The DOFs of the pads in the TPJB, incorporated in direct
integration of the Reynolds equation (the original model), are
eliminated in the proposed model. This order reduction makes
the proposed nonlinear model a suitable alternative to the direct
use of the original model for weak nonlinear transient analysis of
TPJBs. The nonlinear dynamic coefficients are solely dependent on
the journal angular velocity in a specified rotor-bearing system, and
are identified using the oil film forces time series and journal orbits
obtained through using the transient form of Reynolds differential
equation (the original model). The numerically simulated data have
been evaluated at five known levels of unbalance force, and, are
used to setup an over-determined system of linear equations to find
the nonlinear coefficients. A subset selection technique [32], is also
used in order to choose the terms in the Taylor expansion, which
are well representing the simulated oil film forces, among all
candidate terms considered in the expansion.

The remainder of this paper is organized as follows. Section 2
illustrates the governing equations of a rigid rotor supported by a
TPJB, within which the bearing is modeled by transient form of
Reynolds differential equation (the original model). The approach
adopted in the present study to model weak nonlinearities in a
TPJB is presented, in Section 3. This approach leads to a reduced
nonlinear model of a TPJB, which is originated from a basic
understanding of the transient Reynolds equation. Section 4
describes the numerical simulation of dynamical behavior of a
rigid rotor supported on a TPJB. The numerically simulated data
are employed in Section 4 to identify the nonlinear dynamic
coefficients of the reduced nonlinear model using subset selection
technique. The proposed model is validated in this section by
comparing its predicted response to the one obtained through
applying the original model.

2. Governing equations

Rigid rotor equations of motion supported by a five pads TPJB,
as displayed in Fig. 1, when subjected to an unbalance excitation
is:

mJ
€X ¼ FxþmJeΩ2 cos Ωt

mJ
€Y ¼ FyþmJeΩ2 sin Ωt�mJg

IP €δk ¼Mk ; k¼ 1;…;Npads

8>>><
>>>:

ð1Þ

The time transient two dimensional (2-D) Reynolds differential
equation describing the pressure distribution in the kth pad is
defined as:

1

RJ
2

∂
∂θ

h3
k

μ
∂Pk

∂θ

 !
þ ∂
∂z

h3
k

μ
∂Pk

∂z

 !
¼ 6Ω

∂hk

∂θ
þ12

∂hk

∂t
; θk

l rθrθk
t ;

0rzrL ð2Þ

where the oil film thickness in the kth pad is obtained using
geometrical relations,

hk ¼ Rp�RJ
� ��X cos θ�Y sin θ� Rp�Rb

� �
cos θ�θk

p

� �
�δk Rpþtp

� �
sin θ�θk

p

� �
: ð3Þ

The one-dimensional (1D) pad temperature distribution is
obtained from balance of energy expressed as:

ρCP
Ω
2
dTk

dθ
¼ μ RjΩ

� �2
hkð Þ2

�
Hp1 Tk�Tk

Sp

� �
þHJ Tk�T J

� �
hk

: ð4Þ

To solve Eq. (4), one may employ the suggested recommenda-
tion of Ref. [33] as the initial condition for the temperature
distribution:

Tk θk
l

� �
¼ Tsupþ

min hj θj
l

� �n o
j ¼ 1;…;Npads

� �

hk θk
l

� � ΔT ; k¼ 1;…;Npads ð5Þ

The pad temperature distribution is obtained by solution of
two-dimensional (2D) heat equation along with its boundary
conditions,

1
r
∂
∂r

r
∂Tk

p

∂r

 !
þ 1
r2

∂2Tk
p

∂θ2 ¼ 0;RprrrRop; θ
k
l rθrθk

t ð6� aÞ

B:C :

∂Tk
p

∂r ¼ Hp1

kp1
Tk
p�Tk

� �
; r¼ Rp

∂Tk
p

∂r ¼ �Hp2

kp2
Tk
p�Tsup

� �
; r¼ Rop

1
r
∂Tk

p

∂θ ¼ Hp3

kp2
Tk
p�Tsup

� �
; θ¼ θk

l

1
r
∂Tk

p

∂θ ¼ �Hp3

kp2
Tk
p�Tsup

� �
; θ¼ θk

t

8>>>>>>>>>><
>>>>>>>>>>:

ð6� bÞ

y

x1δ

2δ

3δ

4δ
5δ

BO
JO

θΩ

Y
X

Fig. 1. Schematic representation of a TPJB with load-between-pads configuration.
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Assuming the shaft surface temperature to be circumferentially
uniform, it is regarded as the average of oil film temperatures,

T J ¼
PNpads

k ¼ 1

R θk
t

θk
l

Tkdθ

NpadsΔp
ð7Þ

The relationship between oil viscosity and its temperature is
assumed to follow the exponential law given by:

μ¼ μ0exp �β T�T0ð Þ� � ð8Þ

Finally, the oil film bulk temperature rise is estimated from the
followings:

ΔT ¼
PNpads

k ¼ 1 RJΩ
R θkt
θk
l

μRJΩ
hk
LRJdθ

QsupρCP
ð9Þ

In this study, finite element and finite difference formulations
are used simultaneously to perform the thermal analysis of the
TPJB, seeking solutions to the 1D energy equation, Eq. (4), and the
2D heat equations, Eqs. ((6-a) and (6-b)), respectively. For a
specified state of TPJB’s DOFs and an initial guess for the oil film
bulk temperature rise, the temperature distributions within the
pads and the oil film can be evaluated and updated iteratively,
through Eqs. (3)–(9). Subsequently, one may easily calculate
viscosity variations in the oil film through applying the deter-
mined oil film temperature distributions to Eq. (8). Eventually,
thermo-hydrodynamic (THD) analysis of the TPJB, considering the
evaluated oil film viscosity variations, has been implemented in
order to solve the Reynolds equation, Eq. (2), for the pressure
distribution in the bearing. Finite element discretization of Eq. (2)
is performed to evaluate the pressure distribution in the oil film.

Using the obtained pressure distribution, one can evaluate
numerically the nonlinear oil film forces and moments as:

Fx ¼ �
XNpads

k ¼ 1

Z L

0

Z θke

θks
Pk cos θRJdθdz

Fy ¼ �
XNpads

k ¼ 1

Z L

0

Z θke

θks
Pk sin θRJdθdz

Mk ¼ � R L0 R θkeθks RJþtp
� �

θ�θp
� �

Pk cos θ�θp
� �

RJdθdz; k¼ 1;…;Npads

8>>>>>>>>>><
>>>>>>>>>>:

ð10Þ

In the present study, a reduced nonlinear model of TPJBs is
proposed assuming:

1) Nonlinearity in the TPJB is weak.
2) The vibrating rotating system is over-damped.
3) Dominant exerted dynamic load on the rotating system is

unbalance force excitation, synchronous with journal angular
velocity.

Under these assumptions, it may concluded that the free
vibration response or any sub-synchronous vibrations, which
incorporate frequencies different from the journal angular velocity
or its integer multiples, do not contribute to the steady-state
response with constant angular velocity, and may have negligible
contribution to the transient response with constant angular
accelerations. Consequently, journal angular velocity is the only
harmonic component of the unbalance response in the linearized
system, and it is the prime harmony of the response in presence of
weak nonlinear behavior of the rotor supported by TPJBs. There-
fore, synchronous linear dynamic coefficients, as linearized base
model, are applied as leading dynamic terms to the model
proposed for simulating weak nonlinearities in the TPJBs. Then,
the reduced model by using nonlinear modifying terms added to
TPJB linear synchronous dynamic coefficients, is expressed as:

Fx
Fy

( )
¼

0
mJg

( )
�

kxx kxy
kyx kyy

" #
X

Y

� 	
�

cxx cxy
cyx cyy

" #
_X
_Y

( )
þ

FNLx
FNLy

8<
:

9=
;
ð11Þ

The next section, introduces a new nonlinear model which is
consistent with the time transient form of Reynolds equation, Eq. (2).

3. Nonlinear modeling of TPJB

The nonlinear oil film forces in the TPJB, as stated in Eq. (10),
are linearly dependent on the pressure distribution in the bearing,
which is directly evaluated by finding a solution to the Reynolds
equation. Thus, the relationship between the TPJB’s DOFs and the
pressure distribution holds between these DOFs and the oil film
forces. The Reynolds equation is inherently a linear equation with
respect to the pressure distribution. Therefore, a linear operator
as:

L½� ¼ 1

RJ
2

∂
∂θ

h3k
μ
∂½�
∂θ

 !
þ ∂
∂z

h3k
μ
∂½�
∂S

 !
; ð12Þ

can be defined to express Reynolds equation in the following form:

L Pk½ � ¼ 6Ω
∂hk
∂θ

þ12
∂hk
∂t

; θk
l rθrθk

t ; 0rzrL ð13Þ

A direct solution to Eq. (13) for the pressure distribution is:

Pk ¼ L�1 6Ω
∂hk
∂θ

þ12
∂hk
∂t


 �
; θk

l rθrθk
t ; 0rzrL ð14Þ

Table 1
Properties of the TPJB under study.

Parameter Value Parameter Value

fp 0.5 L (mm) 50.000
DJ (mm) 125.000 Wb(N) 6880
Db (mm) 125.196 Ip(kg m2) 0.0024
θp(deg), LBP 18, 90, 162, 234, 306 m 0.3988
μ at 40 C (Pa s) 0.0396 Δp(deg) 52
CP(J/kg/K) 2000 Psup(MPa) 0.15
ρ(kg/m3) 860 Qsup(l/min) 46.7
β(C�1) 0.0319 Tsup( C) 45
kp1(W/m/K) 22 kp2(W/m/K) 45

0 50 100 150 200 250
10-3

10-2

10-1

100

Number of terms

Th
e 

re
si

du
es

Y direction
X direction

Fig. 2. The display of residues resulted from an application of subset selection, at
Ω¼5500 rpm and n¼13, with respect to number of terms contributed in the
nonlinear model, in a descending order.
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The oil film thickness expression, Eq. (3), and its spatial derivative
with respect to θ, are linearly dependent on the DOFs of the TPJB.
Also, a linear relationship holds between the temporal derivative of
the thickness expression and the velocities corresponding to the
TPJB’s DOFs. Thus, the first and the second terms on the right hand
side of the Reynolds equation are linear functions of displacements
and velocities of the TPJB’s DOFs, respectively. On the other hand,
since cubic terms of oil film thickness are included in the linear
operator, the operator would be a third order polynomial function of
the displacements of the DOFs of the TPJB. Therefore, the inverse of
the operator described in Eq. (14) may be expanded as an infinite

power series in displacements of TPJB’s DOF, known as a Taylor series
expansion. According to the above statements, it is clarified that the
pressure distribution as evaluated by Eq. (14), may be expressed by a
Taylor series expansion including terms which have two features:
first, they are linear functions of velocities of TPJB’s DOF; and second,
they can be comprised of products of displacements of TPJB’s DOF up
to higher orders. It should be noticed that the pads motion are
related to the journal motion in the proposed nonlinear model of the
TPJB. In dynamic analysis of TPJBs, the tilting angles of pads are
considered as independent degrees of freedom and the whole
journal-pad dynamics have to be treated generally as a coupled
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Fig. 3. Variations of dimensionless nonlinear dynamic coefficients with respect to journal angular velocity; identified coefficients: black “O”, fitted polynomial: blue solid
line, (a) kx1; (b) kx2; (c) kx3; (d) kx4; (e) ky1; (f) ky2; (g) ky3; (h) ky4.
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vibrating system. However, under specific conditions considering
three assumptions, stated in Section 2, nonlinear dynamic terms of
the oil film forces as well as the linear dynamic terms are described

by polynomial series incorporating, only, journal DOFs displacements
and velocities products. This order reduction is proposed as the main
contribution of the present research. By using the reduced nonlinear
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model, the time required for nonlinear analysis of TPJBs will be
reduced significantly compared to the time needed for nonlinear
analysis by the original model described in Section 2. Moreover,
desired computational accuracy may be achieved by choosing an
appropriate order for Taylor series used for representing the non-
linear parts of the oil film forces. Thus in the followings, only the
DOFs associated with the journal translational motions will be
included in the model which relates the pressure distribution to
the journal's DOFs by a Taylor series expansion. The described Taylor
series may be represented with the aid of following double product
series of journal displacement DOFs:

X � Yð Þn ¼ Xn Xn�1Y ⋯ XYn�1 Yn
n o

;nZ2

_X � X � Y
� �n

¼ _XXn _XXn�1Y ⋯ _XXYn�1 _XYn
n o

;nZ1

_Y � X � Y
� �n

¼ _YXn _YXn�1Y ⋯ _YXYn�1 _YYn
n o

;nZ1 ð15Þ

Taylor series expansions including journal’s DOFs products up
to order n, used for expressing the nonlinear parts of the oil film
forces is described as,

FNLx ¼ X � Yð Þ2 ⋯ X � Yð Þn _X � X � Y
� �1


⋯ _X � X � Y
� �n�1

_Y � X � Y
� �1

⋯ _Y � X � Y
� �n�1

�
Kf gX

FNLy ¼ X � Yð Þ2 ⋯ X � Yð Þn _X � X � Y
� �1


⋯ _X � X � Y
� �n�1

_Y � X � Y
� �1

⋯ _Y � X � Y
� �n�1

�
Kf gY

ð16Þ

Therefore, one may rewrite the equation of motion of a rigid
rotor supported by a TPJB defined in Eq. (1) in a reduced form:

mJ
€X ¼ FxþmJeΩ2 cos Ωt

mJ
€Y ¼ FyþmJeΩ2 sin Ωt�mJg

8<
: ð17Þ

In the following section, the procedure for identification of the
reduced nonlinear model will be presented. The numerically
simulated transient responses of a rigid rotor supported on TPJB
are used to identify the speed dependent nonlinear dynamic
coefficients. Then, the unbalance response evaluated through
using the identified reduced model will be verified by comparison
with the one obtained through applying the original model of
the TPJB.

4. Results and discussion

The specifications of the TPJB under study utilized in support-
ing parts of an industrial gas turbine are introduced in Table 1.
THD analysis of the TPJB has been performed to determine
equilibrium positions of the TPJB, corresponding temperature
distributions and synchronized linear dynamic coefficients in a
journal angular velocity range, from 4000 to 7000 rpm with
300 rpm increments.

The transient analysis of the TPJB, through numerical integra-
tion of Eq. (1), representing the original model, have been
implemented in the journal angular velocity range, and, in five
levels of unbalance excitation, 1 to 3 μm at 0.5 μm intervals. The
differential solver routine ode45 is used for numerically integrat-
ing the TPJB original model equations. The displacement and
velocity initial conditions for each transient analysis are set to
the related equilibrium position and zero, respectively. Oil film
viscosity variation for each transient analysis is considered as the
one obtained at related equilibrium positions of the TPJB. The
simulated data, including time series of displacements, velocities
and oil film forces, are employed to set up an over determined
linear systems of equations, using Eqs. (11) and (16).

One may represent these two systems of linear equations,
corresponding to nonlinear parts of the oil film forces in x and y
directions, as:

X½ � Kf gx ¼ f
� 

x

X½ � Kf gy ¼ f
� 

y

8<
: ð18Þ

It should be noticed that for determining the right hand side of
Eq. (18), linear parts of the oil film forces have been obtained
through evaluating the linear synchronous dynamic coefficients.
The systems of Eq. (18) are solved to estimate the nonlinear
dynamic model. The dominant terms in the nonlinear model are
distinguished using the subset selection technique introduced in
[32]. Application of this technique to the parameter estimation
problem, sorts the terms according to their contributions in
reproducing the simulated oil film forces in a descending order.

The variations of residues with respect to ordered terms
obtained from application of subset selection to the parameter
estimation problem, Eq. (18), at an angular velocity,Ω¼5500 rpm,
and Taylor series to the order of thirteen, n¼13, is shown in Fig. 2.
The residue is defined as the norm2 of difference between the oil
film force vectors obtained through using the exact value and the
ones evaluated through using the reduced model, divided by the
norm2 of oil film force vectors obtained through using the
exact value.

Choosing the first forty terms obtained through applying the
subset selection to the parameter estimating problem, in order to
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keep the relative residues less than 2%, the nonlinear model is
represented as:

FNLx ¼ X2 _YX4 _XY _XY2 ⋯
h i

Kx1

Kx2

Kx3

Kx4

⋮

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

X

FNLy ¼ X2 _XXY _YY XY4 ⋯
h i

Ky1

Ky2

Ky3

Ky4

⋮

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Y

ð19Þ
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The variations of the dimensionless nonlinear dynamic coeffi-
cients, mentioned in Eq. (19), with respect to the journal angular
velocity is seen in Fig. 3.

One notices in Fig. 3 the identified coefficients changes con-
tinuously on the depicted angular velocity interval. Thus, the

nonlinear coefficients at an angular velocity not included in the
identification range, may be well approximated by polynomial
curve fitting to the identified ones depicted in Fig. 3. The identified
nonlinear model have been used to predict the steady state journal
orbit and nonlinear oil film forces at an angular velocity,
Ω¼5950 rpm which is not included in the specified range. The
journal orbit and oil film forces obtained from numerical integra-
tion of the original model, described by Eq. (1), are compared in
Fig. 4, with the ones evaluated by applying the identified nonlinear
model to the equations of motion, Eq. (17).

The comparison of spectrum analysis of the unbalance
response obtained at an angular velocity, Ω¼5950 rpm, and
unbalance excitation, e¼3 mm, by employing the original model
with the one evaluated through using the reduced nonlinear
model of the TPJB are displayed in Figs. 5 and 6. It is noticed, in
Figs. 5 and 6, the evaluated amplitude and phase of the oil film
forces and journal displacements corresponding to each harmonic
term are in good agreements with their counterparts. Thus, the
responses obtained by using the original model and the nonlinear
model have the same frequency content. Excellent match between
two sets of results, shown in Figs. 4–6, indicates that the nonlinear
model is an appropriate alternative for the original model at a
constant angular velocity within the range in which the identifica-
tion is performed.

Using the new model which expands the bearing forces by the
journal harmonic motion, one may conveniently employ harmonic
balance method to evaluate rotor unbalance responses dominated
by weak nonlinear effects. Moreover, the proposed model may be
well incorporated into governing equations of a flexible rotor
supported by TPJBs to predict shifts in related critical speeds and
unbalance responses.

It is noteworthy that, as depicted in Fig. 7, the reduced model
incorporating, only, the linear dynamic coefficients represent very
poorly rotating system dynamics obtained through using the
original model.

Unbalance response evaluation of the rigid rotor exposed to
unbalance excitations, e¼2.5, 2.75, 3 mm during run-up over the
evaluated range of angular velocity with constant angular accel-
eration, Α¼648,000 rev/min2, have been implemented. The jour-
nal velocities and oil film forces in x and y directions obtained
from numerical simulation incorporating the original model are
compared with the ones obtained through using the identified
nonlinear model, in Figs. 8–10. Good agreement between the
results is achieved and only slight differences are seen between
transient responses in last three cycles corresponding to highest
load condition, i.e. e¼3 mm. Thus, transient response of a rotor
supported by a TPJB with constant angular acceleration can be
appropriately simulated using the reduced nonlinear model.

5. Conclusion

The present study proposes a new methodology for nonlinear
modeling and identification of TPJBs in order to construct an
accurate reduced order model with weak nonlinear effects. The
nonlinear model is based on a Taylor series expansion of oil film
forces with respect to displacements and velocities of the journal
center. The nonlinear terms incorporated in the Taylor series
expansion has been developed in such a way to be consistent
with the transient form of Reynolds differential equation. A
numerical integration of the governing equations of a rigid rotor
supported by a TPJB, in a range of angular velocities with and
without constant angular acceleration and in different unbalance
loads, has been implemented to provide sufficient numerical data
to be utilized in nonlinear model parameter estimation. The subset
selection technique has been employed to organize the terms in
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the nonlinear model in a descending order, which characterizes
their contributions in estimating the simulated oil film forces. The
identified nonlinear model is validated by comparing its predi-
cated responses with the ones evaluated by applying the original
model to the equations of motion. Good correlations between the
two sets of results have been achieved in both time and frequency
domains. The proposed nonlinear model provides a fast computa-
tional tool for analysts to investigate the nonlinear behavior in
rotating systems supported on TPJBs.

References

[1] Lund JW. Spring and damping coefficients for the tilting-pad journal bearing.
Tribol Trans 1964;4(342):352.

[2] Nicholas JC, Gunter EJ, Allaire PE. Stiffness and damping coefficients for the
five-pad tilting-pad bearing. Tribol Trans 1979;2(113):124.

[3] Martelli F, Manfrida G. A new approach to the theoretical calculation of the
dynamic coefficients of tilting-pad bearings. Wear 1981;70:249–58.

[4] Allaire PE, Parsell JK, Barrett LE. A pad perturbation method for the dynamic
coefficients of tilting-pad journal bearings. Wear 1981;72:29–44.

[5] Lihua Y, Huiguang L, Lie Y. Dynamic stiffness and damping coefficients of
aerodynamic tilting-pad journal bearings. Tribol Int 2007;40:1399–410.

[6] Yang L, Shemiao Q, Lie Y. Analysis on dynamic performance of hydrodynamic
tilting-pad gas bearings using partial derivative method. ASME J Tribol
2009;131(1):8.

[7] Zh Yan, Wang L, Qiao G, Zheng T. An analytical model for complete dynamical
coefficients of a tilting-pad journal bearing. Tribol Int 2010;43:7–15.

[8] Zh Yan, Lu Y, Zheng T. An analytical complete model of tilting-pad journal bearing
considering pivot stiffness and damping. ASME J Tribol 2011;133(1):011702
(8 pages).

[9] Choy FK, Braun MJ, Hu Y. Nonlinear effects in a plain journal bearing: Part 1—
Analytical study. ASME J Tribol 1991;113(3):555–61.

[10] Czolczynski K. How to obtain stiffness and damping coefficients of gas
bearings. Wear 1996;201:265–75.

[11] Chu CS, Wood KL, Busch-Vishniac IJ. A nonlinear dynamic model with confidence
bounds for hydrodynamic bearings. ASME J Tribol 1998;120(3):595–604.

[12] Hattori H. Dynamic analysis of a rotor-journal bearing system with large
dynamic loads. JSME Int J 1993;36:251–7.

[13] Sawicki JT, TVVLN Rao. Nonlinear prediction of rotor dynamic coefficients for a
hydrodynamic journal bearing. Tribol Trans 2001;44:367–74.

[14] Sawicki JT, TVVLN Rao. A nonlinear model for prediction of dynamic coefficients in
a hydrodynamic journal bearing. Int J Rotating Mach 2004;10(6):507–13.

[15] Zhao SX, Dai XD, Meng G, Zhu J. An experimental study of nonlinear oil-film
forces of a journal bearing. J Sound Vib 2005;287:827–43.

[16] Meruane V, Pascual R. Identification of nonlinear dynamic coefficients in plain
journal bearing. Tribol Int 2008;41:743–54.

[17] Weimin W, Lihua Y, Tiejun W, Lie Y. Nonlinear dynamic coefficients prediction
of journal bearings using partial derivative method. Proc Inst Mech Eng Part J
2012;226(4):328–39.

[18] Yang LH, Wang WM, ShQ Zhao, Sun YH, Yu L. A new nonlinear dynamic
analysis method of rotor system supported by oil-film journal bearings. Appl
Math Model 2014;38(21-22):5239–55.

[19] Adams ML, Payandeh S. Self-excited vibration of statically unloaded pads in
tilting-pad journal bearings. ASME J Tribol 1983;105(3):377–83.

[20] Gadangi RK, Palazzolo AB. Transient analysis of tilt pad journal bearings
including effects of pad flexibility and fluid Film temperature. ASME J Tribol
1995;117(2):302–7.

[21] Brancati R, Rocca E, Russo R. Non-linear stability analysis of a rigid rotor on
tilting pad journal bearings. Tribol Int 1996;29:571–8.

[22] Gadangi RK, Palazzolo AB, Kim J. Transient analysis of plain and tilt pad
journal bearings including fluid film temperature effects. ASME J Tribol
1996;118(2):423–30.

[23] Monmousseau P, Fillon M, Frene J. Transient thermoelastohydrodynamic
study of tilting-pad journal bearings-comparison between experimental data
and theoretical results. ASME J Tribol 1997;119(3):401–7.

[24] Monmousseau P, Fillon M, Frene J. Transient thermoelastohydrodynamic
study of tilting-pad journal bearings under dynamic loading. ASME J Eng
Gas Turb Power 1998;120(2):405–9.

[25] Monmousseau P, Fillon M, Frene J. Transient thermoelastohydrodynamic
study of tilting-pad journal bearings-application to bearing seizure. ASME J
Tribol 1998;120(2):319–24.

[26] Monmousseau P, Fillon M. Transient thermoelastohydrodynamic analysis for
safe operating conditions of a tilting-pad journal bearing during start-up.
Tribol Int 2000;33:225–31.

[27] Abu-Mahfouz I, Adams ML. Numerical study of some nonlinear dynamics of a
rotor supported on a three-Pad tilting pad journal bearing (TPJB). ASME J Vib
Acoust 2005;127(3):262–72.

[28] Ying J., Jiao Y., Chen Zh, Kirk R.G. Nonlinear flutter response of tilting 4 pad
bearings-Rotor system. ASME 2011 In: International design engineering
technical conferences and computers and information in engineering con-
ference: 885-892, 8 pages.

[29] Cao J., Dimond T., Allaire P. Nonlinear modeling of tilting-pad bearings with
application to a flexible rotor analysis. ASME 2013 In: International design
engineering technical conferences and computers and information in engi-
neering conference: V008T13A059, 12 pages.

[30] Cha M, Isaksson P, Glavatskih S. Influence of pad compliance on nonlinear
dynamic characteristics of tilting pad journal bearings. Tribol Int
2013;57:46–53.

[31] Okabe EP, Cavalca KL. Rotor dynamic analysis of systems with a non-linear
model of tilting pad bearings including turbulence effects. Nonlin Dyn
2009;57:481–95.

[32] Friswell MI, Mottershead JE, Ahmadian H. Combining subset selection and
parameter constraints in model updating. ASME J Vib Acoust 1998;120(4):854–9.

[33] Balbahadur A.C., Avinash C. A thermoelastohydrodynamic model of the
Morton effect operating in overhung rotors supported by plain or tilting pad
journal bearings. PhD dissertation, Faculty of the Virginia Polytechnic Institute
and State University, Blacksburg, Virginia, 2001; p. 82.

P. Asgharifard-Sharabiani, H. Ahmadian / Tribology International 92 (2015) 533–543 543

http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref1
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref1
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref2
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref2
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref3
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref3
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref4
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref4
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref5
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref5
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref6
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref6
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref6
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref7
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref7
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref8
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref8
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref8
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref9
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref9
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref10
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref10
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref11
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref11
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref12
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref12
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref13
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref13
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref14
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref14
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref15
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref15
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref16
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref16
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref17
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref17
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref17
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref18
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref18
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref18
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref19
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref19
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref20
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref20
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref20
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref21
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref21
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref22
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref22
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref22
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref23
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref23
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref23
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref24
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref24
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref24
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref25
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref25
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref25
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref26
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref26
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref26
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref27
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref27
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref27
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref28
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref28
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref28
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref29
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref29
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref29
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref30
http://refhub.elsevier.com/S0301-679X(15)00330-8/sbref30

	Nonlinear model identification of oil-lubricated tilting pad bearings
	Introduction
	Governing equations
	Nonlinear modeling of TPJB
	Results and discussion
	Conclusion
	References




