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The behaviour of mechanical structures in low frequencies is strongly affected by the existence of the boundary
conditions. It is not usually possible to provide ideal boundary conditions, i.e. simply supported or clamped,
for structures. Therefore the real structures are mostly constrained by elastic supports. Constructing an accurate
mathematical or numerical model for a structure requires the knowledge of the support parameters. In this paper,
a new method is proposed for the parameter identification of a rectangular plate constrained by elastic support.
The method relies on the free vibration solution of the plate dynamics subjected to elastic boundary conditions and
employs the optimization toolbox of MATLAB.

1. INTRODUCTION

The supports, or boundary conditions, play an important
role in a structure’s dynamic behaviour and must be considered
carefully when constructing mathematical or numerical mod-
els. In reality, the supports of structures are not rigid enough,
and they show flexibility to some degree. The flexibility of the
supports can be modelled as elastic boundary conditions. In
order to have an accurate model of a structure, the knowledge
of the support parameters is essential. The support parameters
can be identified by using experimental results.

The sensitivity method is one of the most widely used ap-
proaches in determining boundary condition parameters.1 In
this method the difference between model predictions and test
observations is defined as an objective function. An iterative
process is then adopted, and the objective function is mini-
mized by using the sensitivity approach. It should be noted
that the sensitivity of higher natural frequencies to support pa-
rameters is low, which results in convergence problems in the
optimization procedure.2

In the characteristic equation method the boundary support
parameters are identified by solving the nonlinear characteris-
tic equations. In this method, which was adopted by Ahmadian
et al., the number of characteristic equations formed is equal
to the number of measured natural frequencies. The bound-
ary condition parameters are then identified by simultaneously
solving the characteristic equations.3

Waters et al. and Wang and Yang adopted the static flex-
ibility measurements and identified the boundary conditions
of a tapered beam.4, 5 They modelled the beam as a uniform
rigid beam that was constrained by collocated equivalent trans-

lational and rotational springs. The boundary conditions are
identified by quasi-static stiffness measurements obtained from
impact tests.

This paper deals with the support parameter identification
of a rectangular plate constrained in its edges by an elastic
boundary condition. The boundary condition contains struc-
tural damping. The solution method proposed by Li et al. is
adopted to analyse the free vibration of the beam.6 The analy-
sis leads to obtaining the natural frequencies and damping ra-
tios of the plate. An identification approach is proposed based
on the solution presented by Li et al. and by using the mea-
sured modal properties (i.e. natural frequencies and damping
ratios).6 The proposed method is verified by using simulated
and experimental results. The next section considers the free
vibration analysis of an elastically supported plate.

2. PLATE DYNAMICS ON ELASTIC
SUPPORT6

Figure 1 shows an elastically supported rectangular plate,
which is constrained by lateral and torsional springs. It is con-
sidered that the elastic boundary condition contains structural
damping.

The governing differential equation for the free vibration of
the rectangular plate is expressed in Eq. (1):

D∇4w(x, y)− ρhω2w(x, y) = 0; (1)

where ∇4 = ∂4/∂x4 + 2∂4/∂x2∂y2 + ∂4/∂y4, and w(x, y)

is the lateral displacement function, ω is the angular frequency
and ρ, h and D are mass density, thickness, and bending rigid-
ity of the plate, respectively. The above governing equation is
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Figure 1. Rectangular plate with elastic boundary condition in all edges

subjected to the following boundary conditions, at x = 0 and
x = a:

kww(x, y) = −D (wxxx + (2− v)wxyy) ; (2)

kθwx = (−1)x/aD (wxx + vwyy) ; (3)

at y = 0 and y = b:

kww(x, y) = −D (wyyy + (2− v)wyxx) ; (4)

kθwy = (−1)y/bD (wyy + vwxx) ; (5)

where kw = kw(1 + iη). kw and kθ are respectively the lateral
and torsional stiffness coefficients of the boundary condition
and η is the structural damping coefficient. The above bound-
ary conditions represent the shear forces and bending moments
introduced at the plate edges by its movements. By consid-
ering a displacement field for the free vibration of the plate,
substituting it into the governing equation and boundary con-
dition relations, i.e. Eqs. (1)-(5), the resulting equation can be
expressed as:6 (

[K]− ρhω2

D
[M ]

)
{a} = 0. (6)

Equation (6) can be used for obtaining the natural frequencies
of an elastically supported rectangular plate, provided that the
parameters of the elastic boundary condition are known. The
natural frequencies are calculated by solving the characteristic
equation, i.e. |K − (ρhω2/D)M| = 0. Since kw is complex
the calculated natural frequencies are a complex conjugate and
of the form ωn = −ζnωn ± iωn, n = 1, 2, . . . . The real
part represents the damping ratio, and the imaginary part is a
measure of the free oscillation frequency of each mode.

Equation (6) can also be effectively used for parameter iden-
tification of the plate boundary support when the natural fre-
quencies and damping ratios are known from experimental or
simulated results. The parameter identification method is dis-
cussed in the next section.

3. PARAMETER IDENTIFICATION METHOD

Consider that N natural frequencies and damping ratios of
an elastically restrained plate are known,

{Ωe} = [ωe1ω
e
2 · · ·ωeN ]T ; (7)

{Ze} = [ζe1ζ
e
2 · · · ζeN ]T ; (8)

where {Ωe} and {Ze} are the vectors of measured or simulated
natural frequencies and damping ratios, respectively. The aim
of this section is to identify the support parameters, i.e. kw,
kθ and η by using the known vectors of modal properties in-
troduced in Eq. (7) and Eq.(8). The support parameters are
estimated by minimizing the differences between known and
predicted modal characteristics as is described in the follow-
ing. The predicted modal parameters are calculated by using
the numerical method presented in the previous section.

In order to start the optimization algorithm, first a set of ini-
tial values for the support parameters are considered, i.e. k0w,
k0θ and η0. The initial values are updated in subsequent itera-
tions until the optimum support parameters are obtained. By
substituting the initial parameters into Eq. (6) and solving the
characteristic equation a set of predicted natural frequencies
and damping ratios are obtained,

{Ωa} = [ωa1ω
a
2 · · ·ωaN ]T ; (9)

{Za} = [ζa1 ζ
a
2 · · · ζaN ]T ; (10)

where {Ωa} and {Za} are the vectors of the predicted natural
frequencies and damping ratios, respectively. The optimum set
of the support parameters can be obtained by minimizing the
following objective function:

OBJ = ||1− {Ωa}
{Ωe}

||+ ||1− {Za}
{Ze}

|| (11)

In Eq. (11) OBJ represents the sum of the norm of the dif-
ferences between the known and predicted natural frequencies
and damping ratios. Different optimization algorithms can be
used to minimize the objective function of Eq. (11) and hence
estimate the optimum support parameters. In sensitivity based
approaches, the optimization problem in each iteration is cast
in the following first order sensitivity equation: [S]{∆} = {ε}.
Here, [S] is the sensitivity matrix, {∆} = [δkw, δkθ, δη]T is
the vector of updating parameters and {ε} is the vector of dif-
ferences between the known and predicted modal parameters.
By solving for {∆}, the updated support parameters in itera-
tion ith are obtained as,

kiw = ki−1
w + δkw; (12)

kiθ = ki−1
θ + δkθ; (13)

ηi = ηi−1 + δη. (14)

Parameter updating based on equations (12)-(14) is termi-
nated when ||ε|| reaches a small value, i.e. ||ε|| << 1. [S] is
a matrix compose of the sensitivity of different modal param-
eters to the support parameters. Since the sensitivity matrix
is not known for the problem considered in this paper, identi-
fication is performed by using gradient based methods in the
optimization toolbox of MATLAB, e.g fmincon, fminsearch,
. . . . In the following section a numerical example is presented
to show the accuracy of the proposed method.
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Table 1. Mechanical properties of the square plate

v E(Gpa) ρ ( kg
m3 )

0.33 200 7800

Table 2. Simulated natural frequencies and damping ratios.

Mode number ω(Hz) ζ (%)
1 115.41 2.04
2 135.43 1.97
3 166.77 1.92
4 217.41 1.71
5 219.97 1.60

4. NUMERICAL EXAMPLE

A square plate of dimensions a = b =2 m and h = 0.0025 m
is considered which is supported by an elastic boundary condi-
tion. The parameters of the boundary condition are considered
as kw = 1000 N

m , kθ = 100 Nm
rad and η = 0.0005. The material

properties of the plate are given in Table 1,

Having the plate dimensions, its material properties, and
the boundary support parameters, the natural frequencies and
damping ratios can be calculated by using Eq. (6). Table 2
shows five natural frequencies of the plate and their corre-
sponding damping ratios:

Next, the modal properties presented in Table 2 are consid-
ered as experimental results, and the parameters of the bound-
ary condition are identified by minimizing the objective func-
tion defined in Eq. (11). Minimization is done by using the Op-
timization Toolbox of MATLAB. Since the objective function
is a nonlinear and complex function, the employed optimiza-
tion algorithm strongly affects the identified results. The effi-
ciency of different optimization algorithms was studied, and fi-
nally it was concluded that the fmincon function is the most ap-
propriate function for the minimization of the objective func-
tion defined in this paper. In Table 3 the elapsed time and the
final value of the objective function for different unconstraint
(i.e. fminsearch and fminunc) and constraint (i.e. fmincon and
patternsearch) optimization algorithms are compared. In ob-
taining the results presented in Table 3 the initial values shown
in Table 4 for support parameters were used. Also, in con-
straint optimization algorithms, it was considered that the sup-
port parameters are positive, i.e. kw > 0, kθ > 0 and η > 0.

Results presented in Table 3 indicate that the fmincon algo-
rithm is more effective in obtaining the plate support param-
eters. In Fig. 2 the change in the objective function and, in
Table 4, the initial and final support parameters are presented
for the fmincon algorithm.

Figure 2 shows that the identification algorithm succeeds
in finding the optimum support parameters after 40 iterations.
The results presented in Fig. 2 and Table 4 indicates that the
proposed method identifies the support parameters with an ac-
ceptable accuracy. The next section considers two experimen-
tal case studies.

Figure 2. Change in objective function.

Table 4. Initial and identified support parameters.

kw ( N
m ) kθ ( Nm

rad ) η

Initial 0.1 0.0001 0
Numerical example

Identified 1000.18945 97.0673 0.00049925
Aluminum plate

Identified 65.104 0.126 0.00028
Steel plate

Identified 3194.161 850.725 0.01849

5. EXPERIMENTAL VALIDATION

In this section, the proposed method is applied to two ex-
perimental case studies, and the parameters of their boundary
conditions are identified.

5.1. Aluminium rectangular plate

In this section the experimental results of a rectangular alu-
minium plate considered by Amabili is used, and its boundary
support parameters are identified.7 The material properties and
geometrical dimensions of the aluminium plate are presented
in Table 5.

The plate was placed between rectangular frames made of
thick steel. The frame prevents the edges of the plate to move
in a perpendicular direction, but they can rotate. Therefore
the boundary condition was very similar to the simply sup-
ported boundary condition. It should be noted that the iden-
tified lateral stiffness coefficient should be much larger than
the identified torsional stiffness coefficient. Modal testing was
performed on the plate, and its natural frequencies and damp-
ing ratios were extracted. The plate was excited by means of
an electromagnetic shaker, model LDS V406. The transmit-

Table 5. Dimensions and mechanical properties of the aluminum plate.7

v E (Gpa) ρ ( kg
m3 ) h (m) b (m) a (m)

0.33 69.10 2700 0.0003 0.184 0.515
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Table 3. The efficiency of different optimization algorithms.

fminsearch fminunc fmincon patternsearch
elapsed time (s) 12423.50 736.33 450.73 18663.19

final objective function 2.08 ×10−9 27.304 2.93 ×10−18 1.53 ×10−8

Table 6. Comparison of experimental and predicted modal properties (aluminum plate).

Mode Natural frequency ω (Hz) Damping ratio ζ (%)
number Exp. Predicted Error (%) Exp. Predicted Error (%)

1 26.87 26.99 -0.47 2.06 2.06 0.0
2 39.37 38.97 1.01 1.51 1.50 0.54
3 55.20 55.60 -0.74 1.88 1.90 -1.13
4 75.72 74.32 1.84 1.34 1.31 2.04
5 93.56 95.10 -1.65 1.12 1.13 -1.72

Figure 3. Variation of the objective function (aluminium plate).

ted value was measured by using a piezoelectric force trans-
ducer, model PCB M209C11, placed between the stinger and
the plate. An accelerometer, model Endevco 22, was glued to
the centre of the plate in order to measure the plate response.
A low level burst-random excitation force was employed, and
the plate frequency response functions (FRFs) were measured.
The plate modal characteristics were extracted by analysing
the experimental FRFs. The experimental results are presented
in Table 6:

The measured modal properties presented in Table (6) are
used, and the parameters of the plate boundary support are
identified. Identification is done by following the procedure
presented in previous sections. It is worth mentioning that only
three first natural frequencies are used in the identification pro-
cedure. The remaining two natural frequencies are used for the
verification of the identified parameters. The variation of the
objective function in the identification procedure is shown in
Fig. 3. The initial and identified support parameters are tabu-
lated in Table 4. In Table 6 experimental and identified modal
properties are compared. The results presented in Table 6 show
the accuracy of the proposed method.

Figure 4. The steel plate supported by rubber seal.

5.2. Steel plate supported by rubber seal

In this section, the boundary condition of the steel plate con-
sidered by Ahmadian et. al. is identified.3 The plate, having
the dimensions of 0.5 m × 0.8 m × 0.0025 m, is attached to
the ground by the rubber seal. A schematic of the elastic sup-
ported plate is depicted in Fig. 4. The plate has the following
material properties: v = 0.33 as Poisson’s ratio, E = 207 GPa
as Young’s modulus, and ρ = 7800 kg

m3 as mass density.

Modal testing was performed on the plate in order to mea-
sure its dynamic properties, i.e. natural frequencies and damp-
ing ratios. The plate was excited by using a modal hammer,
and its response was measured by means of accelerometers.
By transfering the recorded force and response signals into a
digital analyser, the frequency response functions (FRFs) were
calculated. FRFs were then curve fitted, and the modal pa-
rameters of the steel plate were extracted. The experimental
natural frequencies and damping ratios are given in Table 7.
As in the aluminium plate case, the elastic support parameters
are identified by employing the method presented in this paper
and by using the first three measured natural frequencies and
damping ratios. The variation of the objective function in the
identification procedure is shown in Fig. 5. Table 4 reports the
identified support parameters for the steel plate.

The experimental and predicted modal properties are com-
pared in Table 7. It is worth mentioning that the last two sets of
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Table 7. Comparison of the experimental and predicted modal properties.

Mode Natural frequency ω (Hz) Damping ratio ζ (%)
number Exp. Predicted Error (%) Exp. Predicted Error (%)

1 29.60 29.89 -1.00 1.58 1.57 0.32
2 60.40 59.93 0.77 0.84 0.85 -1.23
3 98.90 97.80 1.11 0.91 0.92 -1.56
4 106.20 104.50 1.53 0.87 0.85 1.43
5 120.10 122.90 -2.41 1.36 1.39 -2.72

Figure 5. Variation of the objective function in identification procedure (steel
plate).

modal characteristics are used for verification of the identified
model. The results presented in Table 7 show the accuracy of
the identified support model for the steel plate.

6. CONCLUSION

Identification of the boundary condition parameters of a
rectangular plate restrained in edges by an elastic support was
considered. The boundary support was considered to contain
structural damping. In order to identify the support parameters,
first a numerical solution developed in6 was presented for free
vibration of elastic supported plate. The solution permitted the
calculation of the plate’s natural frequencies and damping ra-
tios. The support parameters were identified by minimizing the
differences between experimental and predicted modal proper-
ties by employing the MATLAB optimization toolbox. The
identification procedure was verified by using simulated and
experimental results presented by Amabili7 and Ahmadian et.
al.3
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