
Research Article
Efficient Model Order Reduction of Structural Dynamic
Systems with Local Nonlinearities under Periodic Motion

M. Mohammadali and H. Ahmadian

Center of Excellence in Experimental Solid Mechanics and Dynamics, School of Mechanical Engineering,
Iran University of Science and Technology, Narmak, Tehran 16844, Iran

Correspondence should be addressed to M. Mohammadali; mohammadali@iust.ac.ir

Received 20 October 2012; Accepted 19 November 2012; Published 9 June 2014

Academic Editor: Hamid Mehdigholi

Copyright © 2014 M. Mohammadali and H. Ahmadian. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

In many nonlinear structural systems, compared with the local regions with induced nonlinear effects, the main portions of the
structures are linear. An exact condensation technique based on the harmonic balance method (HBM) in conjunction with the
modal expansion technique is employed to convert the motion equations of such a system to a set of nonlinear algebraic equations
that are considerably small and adequately accurate to determine periodic responses. To demonstrate the capability of the suggested
method, few case studies consisting of discrete systems with weak and essential nonlinearities are studied, and the results are
compared to other methodologies results.

1. Introduction

Compared with the local regions with induced nonlinear
effects, the main portions of the structural systems are linear.
Typical engineering examples of these localized nonlinear
sources are friction and vibroimpact in joints, local buckling,
crack, nonlinear isolator, dead zone (gap), and squeeze film
dampers in mechanical systems. Consequently, the dynamic
response of such a system is nonlinear. A dynamic model for
this structural system is useful for detailed study, prediction
of response, identification of unknown parameters, or health
monitoring of the overall system. Therefore, much time and
effort are consumed in the development of this dynamic
model that includes desired effects. Usually, the dynamic
properties of the structure components are known (analysed
or tested) as separate components, and they are used for
development of the dynamic model for the total assembled
system.

Anynonlinear response analysis involves significant com-
putational effort, especially if the full dynamic model is
used and a set of performance characteristics related to tem-
perature, preload, deflection, and so forth characterize the
nonlinear elements. Although there is significant motivation
to develop a set of model order reduction (MOR) techniques

to project the system model to a condensed space and
considerably reduce time of nonlinear response computation,
accuracy of these MOR techniques and solution algorithms
are still issues. For reduction of nonlinear discrete models
one can apply linear MOR techniques [1] such as Guyan
reduction [2, 3], improved reduced system (IRS) [4], iter-
ated improved reduced system (IIRS) [5], system equivalent
reduction expansion process (SEREP), [6] or component
mode synthesis (CMS) [4, 7].

Other reduction methods that can be applied to reduce
continuous and discrete models size are commonly used
linear normal modes (LNMs) of linearized system and
nonlinear normal modes (NNMs). Generation of NNMs for
a small system requires considerable effort [8, 9], especially
in the presence of internal resonance [10] and/or external
excitation [11]. In the case of a large system, it is possible to
use other reduction techniques and then generate NNMs of
the reduced order model [12].

Reduction techniques based on linear MOR techniques,
in best, will lead to an acceptable answer for weakly nonlinear
system, andby growing the nonlinearity their accuracywill be
lost due to their linear nature. Local equivalent linear stiffness
method (LELMS) was proposed [13] to reduce the nonlinear
discrete models size. In this method, an equivalent linear
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system of the nonlinear system is iteratively calculated whose
mode shapes are used to reduce the system size.

There aremany different algorithms for solving nonlinear
systems. A semianalytical method that is generally valid over
a much larger domain compared to the other methodologies
is the harmonic balance method (HBM) [14]. The HBM
can solve many types of nonlinear problems in the form of
periodic response. The HBM is used for handling nonlinear
problems consisting of forced excited, strongly nonlinear
response, chaotic behaviour, and internal resonance and has
a great potential for identification and health monitoring.
Furthermore, this technique is applied to estimate NNMs of
nonlinear systems [8].HBMexpands the periodic response of
the nonlinear system in the form of truncated Fourier series,
whose coefficients are estimated by solving a set of nonlinear
algebraic equations. In the absence of internal resonance
in many cases, the solution of one term harmonic balance
has good correlation with the recorded experimental results
[15]. Typically, more accurate approximation to the solution
obtained by using a Fourier series with a higher number of
terms and, in general, the amplitudes of the higher terms
gradually decrease. Consequently, in experiment if the higher
term’s amplitudes are small, then inclusion of measurement
noise will result in the difference between these terms in the
analysis and experiment.

HBM is improved in different ways because of its capa-
bility. Incremental harmonic balance (IHB) [16] suggests a
new formulation based on HBM for achieving frequency
responses of nonlinear systems. With the aim of reducing
the computational cost and preserving the accuracy, adaptive
HBM (AHBM) [17] has proposed selection algorithms for the
number of Fourier series terms. Recently, a new exact reduc-
tion technique [18, 19] was proposed for discrete systems that
condense the problem into the nonlinear DOFs only.

The aim of this work is to study the technique suggested
by KIM [18, 19] and extend this by expanding the nonlinear
DOFsmotions by natural modes of the condensed system. To
demonstrate the capability of the suggested method, few case
studies consisting of a discrete systemwithweak and essential
nonlinearity are studied and the results are compared.

2. Formulation

The general form of a nonlinear dynamic system with 𝑁

degrees of freedom (DOFs) is shown below:

Mq̈ + Cq̇ + Kq + fnl = f
𝐸
, (1)

where q is the field deformation vector,M,C, andK aremass,
damping, and stiffness matrices, fnl is nonlinear force, and
f
𝐸
is periodic excitation force. q, fnl, and f

𝐸
are function of

time which time argument, 𝑡, is dropped for convenience. If
the steady-state solution of above equation with the period of
𝑇 = 2𝜋/𝜔 is requested, the deformation field can be expanded
with the aid of HBM in the form of

q =
𝑚

∑

𝑗=0

(𝜓
𝑗
cos (𝑗𝜔𝑡) + 𝜑

𝑗
sin (𝑗𝜔𝑡)) , (2)

where 𝜓
𝑗
and 𝜑

𝑗
are vectors of vibration amplitude at the

frequency of 𝑗𝜔. By substituting (2) into (1) and using
Galerkin method, the equation of motion is decoupled in the
form below:

−𝑗
2
𝜔
2M𝜓
𝑗
+𝑗𝜔C𝜑

𝑗
+K𝜓
𝑗
+ fnl,𝑐𝑗=f𝐸,𝑐𝑗 ,

− 𝑗
2
𝜔
2M𝜑
𝑗
−𝑗𝜔C𝜓

𝑗
+K𝜑
𝑗
+fnl,𝑠𝑗=f𝐸,𝑠𝑗 ,

𝑗 = 0, 1, 2, . . . , 𝑚,

{f
𝑋,𝑐𝑗
,f
𝑋,𝑠𝑗

} = (1 + sgn (𝑗))

×
𝜔

2𝜋
∫

2𝜋/𝜔

0

{f
𝑋
cos (𝑗𝜔𝑡) , f

𝑋
sin (𝑗𝜔𝑡)} 𝑑𝑡,

(3)

where 𝑋 is replaced by arbitrary subscripts of force vec-
tors. Equation (3) expresses one static equilibrium and 2𝑚
dynamic equations. By using imaginary unit 𝜄 = √−1, (3) can
be put together in the form

(−𝑗
2
𝜔
2M−𝜄𝑗𝜔C+K)𝜒

𝑗
+ fnl𝑗=f𝐸𝑗

𝑗 = 0, 1, 2, . . . , 𝑚,

(4)

where

𝜒
𝑗
= 𝜓
𝑗
+ 𝜄𝜑
𝑗
,

f
𝑋𝑗

= f
𝑋,𝑐𝑗
+ 𝜄f
𝑋,𝑠𝑗

.

(5)

In the case of localized nonlinearity, it is possible to write
nonlinear force vector in the form

f𝑇nl = {𝑓nl1, . . . , 𝑓nl𝑝, 0, 0, . . . , 0} ,

fnl = {
fnl𝛼
0 } .

(6)

Furthermore, the deformation field can be divided into
two vectors with subscripts 𝛼 and 𝛽, which stand for active
or master coordinates and deleted or slave coordinates,
respectively. Active coordinates are experiencing nonlinear
forces and deleted coordinates are only subjected to linear
forces. Also, f

𝐸
vector and M, C, and K matrices can be

divided appropriately with subscripts 𝛼 and 𝛽. Therefore, the
motion equation in (4) can be written in the form

(−𝑗
2
𝜔
2
[
M
𝛼𝛼

M
𝛼𝛽

M
𝛽𝛼

M
𝛽𝛽

]−𝜄𝑗𝜔 [
C
𝛼𝛼

C
𝛼𝛽

C
𝛽𝛼

C
𝛽𝛽

]

+ [
K
𝛼𝛼

K
𝛼𝛽

K
𝛽𝛼

K
𝛽𝛽

]){

𝜒
𝛼𝑗

𝜒
𝛽𝑗

} + {
fnl𝛼
0 }

={
f
𝐸𝛼

f
𝐸𝛽

} , 𝑗 = 0, 1, 2, . . . , 𝑚.

(7)
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Figure 1: The discrete system model.
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Figure 2: The response peak amplitudes of each harmonic at 8th DOF: (a) weakly nonlinear system; (b) essentially nonlinear system.

In above equation, one can eliminate 𝜒
𝛽𝑗

from the first
row with the aid of the second row; this will result in exact
reduced form of motion equation

(−𝑗
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𝛼𝛽
+K
𝛼𝛽
)

× (−𝑗
2
𝜔
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)
−1

K
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f
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𝑗
f
𝐸𝛽𝑗
.

(8)

The deformation field vectors, 𝜒
𝛼𝑗
, can be expanded by

one of its basis. Orthogonal bases which consist of arranged
vectors with minimum energy required for excitation will be
suitable bases to approximate the deformation field vectors
and reduce the size of condense system. To find such bases,

K
𝑀𝑗

can be considered as a constant stiffness matrix, whose
dependence on frequency, 𝑗𝜔, is neglected; then

(−𝜆
2

𝑗𝑘
M
𝛼𝛼
−𝜄𝜆
𝑗𝑘
C
𝛼𝛼
+K
𝛼𝛼
−K
𝑀𝑗
)𝜙
𝑗𝑘
= 0 (9)

is the eigenvalue problem of the linearized condensed system,
where 𝜙

𝑗𝑘
is the 𝑘th mass normalized, maximum real right

eigenvector and 𝜆
𝑗𝑘
is its companion eigenvalue. The 𝜙

𝑗𝑘
are

orthogonal basis of 𝜒
𝛼𝑗

and by increasing the 𝑘 index the
required energy for excitation 𝜙

𝑗𝑘
in linearized condensed

system will grow. Considering that the motion of the non-
linear condensed system is close to linearized system, the
deformation field in (8) can be approximated by few vectors of
these orthogonal bases. Therefore, the deformation field can
be written in the form

𝜒
𝛼𝑗
≅ Φ
𝑗
(𝜂
𝑐𝑗
+ 𝜄𝜂
𝑠𝑗
) , (10)

where 𝜂
𝑐𝑗
and 𝜂

𝑠𝑗
are unknown real vectors and Φ

𝑗
is the

modal matrix in which collaborated mode shapes, 𝜙
𝑗𝑘
, are

arranged in column fashion. After substituting (10) into (8)
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Figure 3: Time response of nonlinear systems at their resonance: (a) weakly nonlinear system 𝜔
∗
= 1.21; (b) essentially nonlinear system

𝜔
∗
= 1.36.

and using Galerkinmethod themotion equation will become
in the form

Θ
𝑗
(𝜂
𝑐𝑗
+ 𝜄𝜂
𝑠𝑗
) + ⟨fnl𝛼 𝑗,Φ𝑗⟩=⟨f𝐸𝛼 𝑗−f𝐸𝑇𝛽𝑗 ,Φ𝑗⟩ ,

Θ
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𝑗
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⟩ ,

⟨a, b⟩ = ba,

(11)

where ∗ is transpose operator. The real and imaginary part
of above equation will result in two different nonlinear
equations. Therefore,

[
Re (Θ

𝑗
) − Im (Θ

𝑗
)
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𝑗
)
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}

}
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{

{
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}
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}

.

(12)

By solving (12) with an arbitrarymethod the final solution
of motion will be achieved.

3. Numerical Results

In what follows, to prove the power of the proposed reduction
technique discrete vibrating systems are studied with weak
and essential nonlinearities of the cubic form. These systems

have 11 DOFs in which 5 of its DOFs are connected together
with nonlinear stiffness (Figure 1).

The steady-state responses of the system under periodic
excitation are determined by the numerical method, HBM,
and proposed method. The resultant nonlinear algebraic
equations of HBM and proposed method are solved by
Newton-Raphson algorithm. The computational complexity
of thismethod at each step can be approximated by the square
of the number of equations.

The motion of these systems is governed by

𝑚�̈�
𝑖
+ 𝑐 (2�̇�

𝑖
− �̇�
𝑖+1

− �̇�
𝑖−1

) + 𝑘 (2𝑥
𝑖
− 𝑥
𝑖+1

− 𝑥
𝑖−1
)

+ 𝑘nl𝑖(𝑥𝑖 − 𝑥𝑖−1)
3
+ 𝑘nl𝑖+1(𝑥𝑖 − 𝑥𝑖+1)

3
= 𝑓
𝑖
,

(13)

where 𝑖 = 1, 2, . . . , 11,𝑚 = 1, 𝑐 = 1/10, 𝑘 = 1, and

𝑓
𝑖
= {

0 𝑖 ̸= 8

cos (𝜔𝑡) 𝑖 = 8.
(14)

For the case of weak and essential nonlinearities 𝑘nl𝑖 is taken
as

{

{

{

0 𝑖 < 7

1

5
𝑖 ≥ 7,

{
0 𝑖 < 7

2 𝑖 ≥ 7,
(15)

respectively. 𝜔
1
= 0.26Hz, real part of the first resonance

frequency of linearized system, is used to normalize the
excitation frequency 𝜔∗ = 𝜔/𝜔

1
. Peak amplitudes of each
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harmonic at 8th DOF are shown in Figure 2 for different
frequencies.

The steady-state responses of the systems at their reso-
nances are approximated by first 7 harmonies.

Thenonlinear systemswith 11DOFs are reduced to 5mas-
ter DOFs and solved using HBM, which causes around 80%
decrease in computational cost. By applying the proposed
method to the condensed system and expanding the response
using its first three mode shapes, another 64% computational
cost reduction is achieved due to reduction of systems size
from 5 DOFs to 3 DOFs. The results are shown in Figure 3.

In both cases, there are negligible differences between
numerical method and the HBMdue to harmonic truncation
order; therefore, this error is present in the proposed method
results.

Compared to the results of the HBM and numerical
method, phase of the DOFs vibration computed by the
proposed method is accurate in both nonlinear systems.
However, the difference between the calculated amplitudes
with the proposed and other methods is increased with
growing the nonlinearity, but the captured response is still
acceptable. These differences are due to reduction of exact
condensed system size, from 5 DOFs to 3 DOFs, which leads
to a stiffer system.

4. Conclusion

In this paper, a new condensation technique is suggested for
discrete systems by the combination of exact condensation
techniques based on HBM and modal expansion technique
to reduce the computational cost and preserve the accuracy.
The proposed method is used to reduce the size of two non-
linear systems with weak and essential nonlinearity. At last,
the predicted periodic responses are compared with other
methodologies results. The correlation between the results of
the proposed method and other techniques is appropriate.
Using the suggested technique, the reduced form of the
system is independent of system nonlinearities; therefore,
this technique has a great potential for the identification of
system nonlinearities. The main drawback of the suggested
technique is its frequency dependency.
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